Fine-Grained Entity Recognition
نویسندگان
چکیده
Entity Recognition (ER) is a key component of relation extraction systems and many other natural-language processing applications. Unfortunately, most ER systems are restricted to produce labels from to a small set of entity classes, e.g., person, organization, location or miscellaneous. In order to intelligently understand text and extract a wide range of information, it is useful to more precisely determine the semantic classes of entities mentioned in unstructured text. This paper defines a fine-grained set of 112 tags, formulates the tagging problem as multi-class, multi-label classification, describes an unsupervised method for collecting training data, and presents the FIGER implementation. Experiments show that the system accurately predicts the tags for entities. Moreover, it provides useful information for a relation extraction system, increasing the F1 score by 93%. We make FIGER and its data available as a resource for future work.
منابع مشابه
Assessing the Challenge of Fine-Grained Named Entity Recognition and Classification
Named Entity Recognition and Classification (NERC) is a well-studied NLP task typically focused on coarse-grained named entity (NE) classes. NERC for more fine-grained semantic NE classes has not been systematically studied. This paper quantifies the difficulty of fine-grained NERC (FG-NERC) when performed at large scale on the people domain. We apply unsupervised acquisition methods to constru...
متن کاملFine-Grained Named Entity Recognition Using Conditional Random Fields for Question Answering
In many QA systems, fine-grained named entities are extracted by coarse-grained named entity recognizer and fine-grained named entity dictionary. In this paper, we describe a fine-grained Named Entity Recognition using Conditional Random Fields (CRFs) for question answering. We used CRFs to detect boundary of named entities and Maximum Entropy (ME) to classify named entity classes. Using the pr...
متن کاملFine Grained Classification of Named Entities In Wikipedia
Fine Grained Classification of Named Entities In Wikipedia Maksim Tkachenko, Alexander Ulanov, Andrey Simanovsky
متن کاملFine-grained Arabic named entity recognition
Named Entity Recognition (NER) is a Natural Language Processing (NLP) task, which aims to extract useful information from unstructured textual data by detecting and classifying Named Entity (NE) phrases into predefined semantic classes. This thesis addresses the problem of fine-grained NER for Arabic, which poses unique linguistic challenges to NER; such as the absence of capitalisation and sho...
متن کاملTopic Information Based Neural Network Model for Fine-grained Entity Type Classification
Entity recognition is an important part of natural language processing, but nowadays most entity recognition systems are restricted to a limited set of entity classes (e.g., person, location, organization or miscellaneous). Therefore, fine-grained entity type classification becomes a hot issue to further study. This paper proposed a neural network model based on topic information for fine-grain...
متن کاملName Translation based on Fine-grained Named Entity Recognition in a Single Language
We propose named entity abstraction methods with fine-grained named entity labels for improving statistical machine translation (SMT). The methods are based on a bilingual named entity recognizer that uses a monolingual named entity recognizer with transliteration. Through experiments, we demonstrate that incorporating fine-grained named entities into statistical machine translation improves th...
متن کامل